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Abstract 
In the manufacturing domain, few new distributed systems 
are built ground-up; most contain wrapped legacy 
components.  While the legacy components themselves are 
already well-tested, imperfect integration can introduce 
subtle faults that are outside the prime target area of 
generic integration and system tests.  One might postulate 
that focused testing for integration faults could improve the 
yield of detected faults when used as part of a balanced 
integration and system test effort.  We define such a testing 
strategy and describe a trial application to a prototype 
control system.  The results suggest that focused testing 
does not add significant value over traditional black-box 
testing. 
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1 Introduction 
Integration technologies such as the Common Object 
Request Broker Architecture (CORBA) [16] and the 
Component Object Model* (COM) [13] have changed the 
way that software systems for manufacturing and other 
domains are built.  Components that were originally 
deployed in different places and times are now being 
wrapped with object-oriented interfaces and made to 
interact with one another.   Data exchange is being replaced 
by data sharing [12].  This has created a new category of 
problems for software testers, who must find not only 
component faults, but also integration faults such as 

                                                           
* Commercial equipment and materials are identified in 
order to describe certain procedures.  In no case does such 
identification imply recommendation or endorsement by 
the National Institute of Standards and Technology, nor 
does it imply that the materials or equipment identified are 
necessarily the best available for the purpose. 

   
 
 
 
 
 

unintended interactions between components and 
misunderstood interface semantics.  While overt functional 
faults are detected by current testing practices, imperfect 
integration between legacy components or between legacy 
components and the interfaces with which they are 
wrapped can introduce subtle faults that are outside the 
prime target area of generic functional tests.  One might 
presume that a change in tactics is needed to target the new 
class of faults – but is it really? 

Since working around imperfect integration is a chronic 
expense, any reduction in imperfect integration could result 
in dramatic savings.  In this paper we will examine the 
taxonomy of integration conflicts, describe how to 
construct tests aimed specifically at detecting faults 
induced by those conflicts, and discuss an application of 
those tests to a prototype control system. 

2 Related Work 
Black-Box Testing by Boris Beizer provides ample 
background on traditional testing techniques [2].  Another 
relevant book by the same author, Integration and System 
Testing, is still forthcoming as of October, 1999. 

Some of the worst legacy system integration faults are 
analogous to faults that can occur in newly developed 
software that lacks conceptual integrity.  Brooks has much 
to say on this topic in The Mythical Man-Month [3], 
focusing on prevention. 

The concepts of components and connectors in a system 
are formalized in architecture description languages 
(ADLs).  Recent work involving ADLs includes 
formalization of dependencies between components [19] 
and operations on connectors [7]. 

Zhenyi Jin and Jeff Offutt have defined a coupling-
based testing technique [11] and coupling-based coverage 
criteria for integration testing [10].  These focus on white 
box functional testing of connections, for example, testing 
the expected values of variables before and after an 
interaction between components, and on structural 
coverage. 

Numerous formal languages and simulation tools exist 
for avoiding concurrency-related problems in distributed 
systems; these are chiefly used in the networking, 
telecommunication, and real-time disciplines, where finite 
state approaches are relatively common [8,9]. 
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Finally, there are efforts ongoing, such as those of the 
Testing Distributed Systems project at Purdue [18] and the 
Test Special Interest Group of the Object Management 
Group [15], to build tools and define interfaces for 
monitoring and debugging the kind of distributed system 
that concerns us. 

3 Taxonomy of Integration Conflicts with 
Suggested Test Cases 
Our approach to defining a "focused" testing strategy for 
integration conflicts is to (1) explore the taxonomy of 
integration conflicts; (2) enumerate the techniques used to 
resolve the conflicts; (3) enumerate the faults that these 
techniques could potentially introduce; and (4) determine 
test cases to detect the resulting failures. 

We have built this taxonomy out of our own 
experiences and those of people we surveyed.  The 
categories are not all mutually exclusive, but each one at 
least provides a unique view of the conflict.  Inevitably, 
readers will have experienced other kinds of conflicts that 
we have not anticipated, which may suggest additional test 
cases. 

3.1 Connection 
3.1.1 Conflict Description 
A connection conflict occurs when the interfaces exposed 
by the components are architecturally different.  Examples: 

• We have data flowing through a pipeline but we need 
to integrate a component that only reads and writes to 
files. 

• We have an ODBC (Open Database Connectivity) 
client but the database server is web-based. 

• We need to pipe data into an application that only 
provides a graphical user interface (GUI) for data 
entry. 

3.1.2 Resolution 
In trivial cases, such as the pipes-versus-files conflict, it is 
possible to resolve the conflict using a scripting language.  
Output redirection can be used as a pipe-to-file adapter, and 
any program that can copy a file to standard output can be 
used as a file-to-pipe adapter.  We can think of these 
programmatic expedients formally as transformations on 
connectors [7]. 

In harder cases it may be necessary to wrap a 
component with a new interface and translation logic; this 
wrapping is also a kind of integration and can produce new 
conflicts.  In the worst case it is necessary to alter the 
component itself to give it a new interface because no 
transformation of the existing connector is feasible. 

3.1.3 Potential for Faults 
Even the trivial pipe-to-file resolution can introduce faults 
related to file name collisions, full disk conditions, network 

problems (for networked file systems), and unintended 
interactions with other programs or people modifying the 
file system.  Some nontrivial adaptations create the 
potential for semantic bugs, and most will alter the timing 
of transactions, possibly triggering timing-related failures. 

3.1.4 Test Cases 
Test for file name collisions, full disk conditions, network 
problems, concurrency problems and other timing-sensitive 
faults by stress-testing (i.e., testing under heavy load) the 
relevant interface in combination with any other entities, 
external or internal, that would compete for the same 
resource.  Complex adapters should additionally be 
subjected to coverage-based testing (i.e., testing to cover 
some domain of inputs or behaviors) to check each 
translation that the adapters make. 

3.2 Control 
3.2.1 Conflict Description 
A control conflict occurs when the components embody 
incompatible assumptions about the flow of control in the 
system.  Examples: 

• Two components each expect to be the "main" 
component, and neither will respond to the other's 
requests.  We call this case "too many leaders." 

• Two components each expect to be "pure servers," and 
neither will make requests of the other.  We call this 
case "no leader." 

3.2.2 Resolution 
In the "too many leaders" case, one of the "leaders" must be 
converted into a "follower."  This can be more or less 
difficult depending on the architecture of the component.  
Often it is necessary to build a wrapper that synthesizes 
meaningless transactions in order to get the component to 
perform requested actions. 

The "no leader" case is easier.  One need only supply 
the missing "main" component. 

3.2.3 Potential for Faults 
Converting a "leader" into a "follower" is an inherently 
fragile operation because it violates the component's 
assumption that it does, in fact, control the entire system.  
When a special case arises, the component may take 
actions, such as initiating interactions with subordinates, 
that are not anticipated by the integrator.  There are also 
likely to be complications in the production of synthesized 
transactions.  Since it believes that it is the main program, 
the component will be diligent in rejecting transactions that 
are inconsistent with its view of the system state, even 
though that view may be completely synthetic and 
irrelevant. 
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3.2.4 Test Cases 
For "leaders" that have been converted into "followers," 
test special cases and long or repeated scenarios that could 
potentially build up state in the converted component.  For 
newly built "main" components, conduct standard unit, 
integration, and system tests as you would with any new 
component. 

3.3 Design 
3.3.1 Conflict Description 
A design conflict occurs when the components were built 
to satisfy incompatible design requirements.  Examples: 

• One component is real-time, another is not. 
• One component is secure, another is not. 
• One component is fault-tolerant, another is not. 

If the design requirement in question is also a 
requirement of the integrated system, then the problem is 
that one of the components fails to meet that requirement.  
If the design requirement is not a requirement of the 
integrated system, then the problem is that one of the 
components may respond to a timing/security/failure 
condition that is irrelevant in the integrated system context. 

3.3.2 Resolution 
Design requirements are often easy to eliminate but usually 
very hard to retrofit.  The design requirements in our 
examples can be eliminated as follows without modifying 
the components: 

• Real-time deadlines can all be set to the latest possible 
timestamp. 

• Security classifications can all be set to the most public 
and unprotected policy. 

• Failure responses can be turned off or ignored. 

But retrofitting them without modifying the components is 
fragile at best: 

• The component can be left sufficiently under-utilized 
that deadlines will be met. 

• The component can be wrapped with a security 
preprocessor that validates or rejects every transaction. 

• The component can be wrapped with a script that 
restarts it if it crashes. 

3.3.3 Potential for Faults 
In the first case, the most likely failure is an inappropriate 
response to a condition that is not relevant to the integrated 
system.  In the second case, the wrapped component is 
likely to fail to meet the new requirements under stress 
because there is essentially no control over its actual 
performance: 

• A wrapper cannot force a component to complete its 
work on-time. 

• A wrapper cannot prevent a component from making 
internal state changes that violate security policy. 

• A wrapper cannot force a component to respond 
intelligently to failure conditions. 

If the integrator went to the effort of modifying the 
internals of the component to retrofit the new requirement, 
then any kind of software fault may have been introduced. 

3.3.4 Test Cases 
Stress-test the affected component with respect to the 
relevant design requirements.  If a design requirement has 
been relaxed, test extreme cases to ensure that an 
inappropriate response does not occur.  If a design 
requirement has been added, ensure that the requirement 
continues to be met under stress.  If a wrapper has been 
used, test cases that explore the separation of functionality 
between the wrapper and the wrapped component.  
Otherwise, conduct standard unit, integration, and system 
testing with the modified component. 

3.4 Model 
3.4.1 Conflict Description 
A model conflict occurs when components use 
incompatible factorings of the same conceptual domain.  
Examples: 

• Vector graphics versus bitmapped graphics. 
• Constructive solid geometry CAD (Computer-Aided 

Design) versus boundary representation CAD. 

3.4.2 Resolution 
Exchanged information must be subjected to a destructive 
translation in order to get the receiving system to produce a 
similar image.  Even so, it is only a similar image; the 
semantics of the original data are lost. 

3.4.3 Potential for Faults 
Since there is no semantic interchange between the 
systems, it is unwise to use the received data in any 
rigorous computations.  Preferably, the received data would 
only be used for presentation, and any faults would only 
degrade the quality of the presentation without inducing 
software failures.  But in practice, there may not be any 
alternative to using the data, so related failures will occur. 

3.4.4 Test Cases 
Test any scenarios in which the translated information is 
passed farther downstream and/or is used in subsequent 
computations.  Analyze the flow of information in the 
system to determine all possible impacts of the data and 
test each significant case. 
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3.5 Scope 
3.5.1 Conflict Description 
A conflict of scope occurs when a concept that is important 
to the world view of one component is not realized by 
another.  Examples: 

• (From the PC world)  A 3-button mouse needs to 
operate using a protocol originally designed for a 2-
button mouse. 

• One component versions documents while another 
considers versioning to be out-of-scope. 

• One component requires an approval for every work 
item while another does not track approvals at all. 

3.5.2 Resolution 
If the scope of a component is broader than is required for 
the integrated system, the unwanted functionality can be 
ignored or the unwanted fields can be filled with 
synthesized values.  If the scope of a component is 
narrower than is required for the integrated system, the 
missing functionality must be provided by a wrapper or 
somehow embedded within existing structures.  (This is 
what happens with 2½-button serial mice – middle button 
events are encoded as movements that are zero in both 
axes.) 

3.5.3 Potential for Faults 
Again, there is the danger that a component will reject 
transactions because of synthesized values having no 
relevance to the system as a whole.  Added-on functionality 
may be faulty, and embedding data within existing 
structures can create semantic faults and/or conflicts with 
other components that are trying to use the same fields for a 
different purpose (maybe even the purpose for which they 
were put there in the first place). 

3.5.4 Test Cases 
If synthesized values have been used to adapt a component 
to a system with a narrower scope, test special cases in 
which the synthetic values could have an impact.  If the 
scope has been widened by embedding data in existing data 
structures, trace possible uses of the affected fields, 
particularly conflicting uses, and test those scenarios.  If a 
wrapper has been used to extend the scope, test cases that 
explore the separation of functionality between the wrapper 
and the wrapped component. 

3.6 Semantic 
3.6.1 Conflict Description 
A semantic conflict occurs when the meaning of some 
entity is different to different components.  Examples: 

• One component interprets a given message as a 
command to perform an action while another 

component interprets it as a notification that the action 
has been performed. 

• Components assume different units for untagged 
numerical values. 

• One component's diagnostic dump is interpreted by 
another component as flight data.  (Although this did 
occur during the Ariane 5 disaster, it was not the cause 
of the failure [1].) 

3.6.2 Resolution 
The problematic entities must be translated into those 
entities that will best preserve the original semantics when 
they are interpreted by the receiving system.  In cases 
where no perfect translation exists, the integrator must 
work around or persuade the users to live with the "lowest 
common denominator" semantics. 

3.6.3 Potential for Faults 
If the integrator is not cognizant of all of the semantic 
disagreements between the components, direct mappings 
will likely be made between entities that are not quite 
equivalent.  The components will happily interpret each 
other's data in ways that are valid according to their own 
specifications but which are completely wrong in the 
system context.  These faults are similar to those that can 
occur in newly developed software when there is a lack of 
conceptual integrity.  Brooks called these "the most 
pernicious and subtle" of all bugs [4]. 

When the components being integrated are legacies 
from different sources, there is no conceptual integrity 
except that which 
• occurs naturally among like-minded people; 
• results from subscription to a common standard, 

specification, or reference; 
• is imposed by the integrator's mapping. 

3.6.4 Test Cases 
Identify and document scenarios which demonstrate the 
intended semantics of all system-level concepts that are 
relevant to the integrated components.  Execute the 
scenarios and verify that the usage of the concepts was 
consistent with the system-level interpretation. 

3.7 Syntactic 
3.7.1 Conflict Description 
A syntactic conflict occurs when components use different 
representations for the identical concept.  Examples: 

• Different file or message formats. 
• Different scripting languages. 
• Different protocols. 

3.7.2 Resolution 
Simply translate one syntax to the other. 



 5

3.7.3 Potential for Faults 
In a word, mistranslation.  A mistranslation may result in 
valid or invalid syntax.  If the resulting syntax is invalid, 
one would expect to see fairly obvious failures.  But if the 
resulting syntax is valid, then the mistranslation generates a 
semantic fault. 

3.7.4 Test Cases 
Perform coverage-based testing of the syntactic elements in 
the source representation.  Perform additional tests of cases 
where the mapping to the target representation is nontrivial, 
such as when the correct target representation depends on 
context. 

3.8 Unknown 
The preceding enumeration includes several techniques that 
can be used to detect imperfect integration even if the 
integration conflicts that have been addressed in the system 
are unknown: 

• Test for correct usage of system-level concepts as 
described in Section 3.6. 

• Stress-test the system with respect to overall volume as 
well as system-level design requirements. 

• Test scenarios in which there is high propagation of 
information through the system. 

4 Application to Prototype Control System 
4.1 Background 
For a test subject, we obtained a prototype control system 
from another division in our own organization.  This 
system has been used in the past to demonstrate the use of 
the Real-Time Control Systems (RCS) Library [17] to 
control a coordinate measuring machine remotely.  A real 
coordinate measuring machine can be used or a simulation 
can be substituted.  For practical reasons, we used only the 
simulation. 

The prototype system is known to produce excellent 
results when used in practice with a real coordinate 
measuring machine, even though resources are not 
available to make a production-quality system.  Moreover, 
the specific integration that we tested was the lowest 
priority for the prototype system's development.  Thus, the 
results of our testing are only relevant to our hypothesis 
regarding test methods, and are not significant for 
evaluating the quality or value of the software. 

The following paragraph describes our understanding of 
the system at the time that we identified test cases.  The 
testing exercise revealed some inaccuracies in our 
understanding that we will discuss in the analysis. 

The front end receives Dimensional Measuring 
Interface Standard (DMIS) [6] programs that are 
normally generated by another component that we 
have left out of scope.  Using the Real-Time Control 

Systems (RCS) Library, it processes these into 
Coordinate Measuring Machine (CMM) "canonical 
commands." The "canonical commands" are then 
reduced to a simple, ad hoc command language that 
is sent over a socket.  The commands are received 
and interpreted by a Graphic Simulation Language 
(GSL) program running inside of 
Deneb/ENVISION [5] on a different host.  
ENVISION simulates a CMM performing the 
specified commands and sends simulated inspection 
data back over the socket.  The inspection data are 
read back by the front end and subsequently 
analyzed in an operation that we have left out of 
scope. 

4.2 Preliminaries 
In order to verify that the installation of the experimental 
("sandbox") copy of the demo was successful, we first 
attempted to run the standard demo scenario without 
modification.  Unfortunately, the installation was not 
successful the first time.  We encountered a series of 
failures resulting from improper configuration 
management.  With our limited resources, instead of 
modifying the demo system code to pursue a proper system 
configuration, these were resolved by recompiling the 
demo and by identifying specific computer workstations on 
which the demo was known to work. 

Through discussion with the regular operator, we 
established that the front end understands only a subset of 
the DMIS language.  Clients are expected to restrict their 
DMIS input to the subset that is understood.  This is due to 
the original purpose of the system:  to experiment with 
certain architectural issues, not to be a complete system.  In 
addition, GSL has broader functionality than what can be 
encoded in the DMIS subset.  There is the potential for 
conflicts of scope both upstream and downstream, but since 
this is a known limitation of the system, we must restrict 
the scope of our testing to the subset of DMIS understood 
by the front end to obtain results of practical value.  We 
used the DMIS programs from the existing demo as a guide 
to the testable scope. 

We also established a priori that a control conflict 
exists between the front end and ENVISION.  In the demo, 
ENVISION starts up as a standalone program.  An operator 
must interact with it to place it into "server mode" to accept 
a connection from the front end.  The simulation will only 
idle in this mode for a few minutes before spontaneously 
reverting to standalone mode, requiring another operator 
intervention, but this time-out behavior was intentionally 
introduced to conserve critical system resources. 

Finally, we observed that the demo scenario is not 
calibrated against the CMM simulation as delivered.  We 
elected to ignore this problem. 
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4.3 Black-Box Testing 
Traditional black-box testing treats the implementation 
under test as opaque; tests are selected based only on 
coverage of the functional specification or the feasible 
domain of input.  Coverage-based, black-box testing is 
"targetless" in the sense that it is not designed to detect any 
particular class of error more than any other.  On the other 
hand, because the tester is not looking for any particular 
class of error, the process is inherently more sensitive to 
functional errors, which cause hard-to-ignore failures, than 
to semantic ones, which might require more analysis. 

The following abstract test cases were formulated after 
the preliminaries but before any testing was conducted.  
The executable test cases were created in sequence after 
testing was begun, so limitations discovered in earlier test 
cases would be avoided in later ones.  The approach to 
identifying test cases was to obtain coverage of the 
domains of parameters to the DMIS commands used in the 
existing demo scenario.  Coverage of DMIS statements per 
se cannot be meaningfully explored since the permissible 
statements are defined by the existing demo scenario. 

Test case 1  Coordinate extrema, GOTO (the DMIS 
command for unguarded moves) 
Test case 2  Coordinate extrema, PTMEAS (the DMIS 
command for probing) 
Test case 3  Vectors for PTMEAS (setting the direction of 
probing) 
Test case 4  Feed rates 
Test case 5  Length units 
Test case 6  Angle units 
Test case 7  Feed rate units 

4.4 Testing for Imperfect Integration 
Our experimental, "focused" testing strategy is directed by 
the taxonomy of integration conflicts.  Although we 
narrowed the scope of the system considerably, the 
following types of conflicts still appear to be relevant: 

• Connection (getting ENVISION to receive commands 
on a socket) 

• Control (too many leaders) 
• Scope (narrowed from DMIS and GSL to the scope of 

the DMIS parser and the ad hoc control language) 
• Semantic (understanding of CMM controller state and 

behavior, units, usage of vectors, interpretation of ad 
hoc control language) 

• Syntactic (DMIS to ad hoc language by several steps) 

The following abstract test cases were formulated after 
the preliminaries and after the formulation of the black-box 
test cases but before any formal testing was conducted.  
The executable test cases were created in sequence after 
black-box testing was complete, so limitations discovered 
in earlier test cases would be avoided in later ones.  As with 
the black-box testing, it was difficult to conceive of test 
cases that would not unfairly bias the yield by detecting the 

problems documented in Preliminaries.  We considered a 
test case "fair" if the expected failure modes were not 
identical to one of the known problems: 

• ENVISION will refuse to accept connections from the 
front end if the front end does not connect to it within a 
few minutes of being placed in "server mode." 

• Interpretation of DMIS language is incomplete. 

Using the guidelines in Section 3, we first identified 
one fair test case for each category of conflict known to be 
relevant to the system, then filled out the quota with 
alternatives.  Significantly, we rejected the important 
semantic tests on unit conversions and on the directionality 
of vectors because they would have been redundant with 
black-box test cases previously identified. 

Test case 1 
Category:  Connection 
Description:  Execute a scenario containing many short 
movements while loading the network link between the two 
components. 
Expected failure modes:  stress-related failures. 

Test case 2 
Category:  Control 
Description:  In the middle of a scenario, set the feed rate 
(FEDRAT/MESVEL) very slow and send a movement 
command (PTMEAS) that should take very long to 
execute. 
Expected failure modes:  incorrect time-outs, feed rate 
faster than requested. 

Test case 3 
Category:  Scope 
Description:  Using SAVE and RECALL, send a long 
DMIS program that switches coordinate systems several 
times between movements.  (These translations are beyond 
the scope of the ad hoc protocol, as are units conversions.) 
Expected failure modes:  lost or garbled state. 

Test case 4 
Category:  Semantic 
Description:  Test the semantics of movement and position 
with special cases.  For example, GOTO the position 
already occupied. 
Expected failure modes:  rejection of apparently legal 
commands, unexpected movements or failures to move. 

Test case 5 
Category:  Syntactic 
Description:  Exercise syntactic variations on numbers and 
whitespace in commands.  (Most other admissible syntax 
tests in the very limited scope are made redundant by the 
black-box testing.) 
Expected failure modes:  incorrect translation. 

Test case 6 
Category:  Scope 
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Description:  Send a DMIS program containing many 
boilerplate commands, followed by a normal inspection 
scenario. 
Expected failure modes:  stress-related failures, incorrect 
impacts from boilerplate commands. 

Test case 7 
Category:  Semantic 
Description:  Test the semantics of probing and collisions 
with special cases. 
Expected failure modes:  rejection of apparently legal 
commands, unexpected collision behavior. 

4.5 Results 
To conserve space, subtests in which no failures were 
observed are not detailed here. 

4.5.1 Black-Box Tests 
Test case 1  Coordinate extrema, GOTO 

When specified coordinates exceeded the physical 
range of the CMM, CMM components "floated" out to the 
specified coordinates anyway, even passing through the 
table and the floor when necessary.  As the moves became 
longer, the simulation began "freezing" for increasing 
periods of time after each move.  Upon further 
investigation, we found that a front-end component logging 
to a window called EMOVESIMMAIN was active during 
these "freezes."  In an iconified window, it was logging a 
long series of micro-movements that would, in their 
summation, equate to the long movement that had been 
previously commanded.  When this operation completed, 
the next command was issued and ENVISION continued 
normally. 

To enable the test to proceed, all long moves except the 
final one were commented out.  The final move, which 
used coordinates on the order of 1015, was successfully 
received by ENVISION.  The destination point was drawn, 
but ENVISION then reverted to console-interactive mode 
and made no further progress.  The front end still read the 
status as executing.  No error message was observed. 

When ENVISION was killed to stop the test, the front 
end reported feedback from ENVISION which was 
erroneous. 

Test case 2  Coordinate extrema, PTMEAS 
ENVISION performed the PTMEAS commands at the 

same velocity as it performed GOTOs.  However, the rate 
used by EMOVESIMMAIN was considerably slower, so 
the "freezes" were considerably worse than in Test 1 and 
less subtests could be executed in the available time.  
Otherwise, the change from GOTO to PTMEAS did not 
produce different results. 

Test case 3  Vectors for PTMEAS 
The front-end parser printed an error and entered an 

infinite loop when WKPLAN (the working plane) was 
changed inside of a MEAS block (the DMIS program 
structure in which probing is performed).  WKPLAN was 

moved to the top of the file to fix this.  Then the parser had 
the same problem when it arrived at a PTMEAS without an 
explicit vector.  This subtest was commented out.  The test 
then ran to completion, but some of the steps in the DMIS 
program were skipped without any warnings or errors.  
Repeated runs of the test showed different skipped steps. 

Test case 4  Feed rates 
Test 4 contained subtests for GOTO and PTMEAS 

related feed rates.  The parser printed errors and looped 
when MESVEL commands (the commands used to set the 
feed rate) appeared inside a MEAS block.  The test was 
refactored to enable the feed rate to be changed only 
between MEAS blocks.  It was then possible to begin 
executing the GOTO subtest. 

Changes in feed rate affected EMOVESIMMAIN but 
the rate used by ENVISION was unchanged.  When the 
feed rate became relatively large, EMOVESIMMAIN 
overshot its target and kept going toward infinity, 
effectively hanging the test.  The GOTO subtest was called 
complete and commented out. 

The PTMEAS subtest ran into problems as only 4 of the 
6 probes needed to characterize a cylinder were actually 
executed (skipped steps again) which caused the fitting 
algorithm to fail.  Making the probes cover a greater 
distance did not fix the problem.  The subtest was called 
complete except to verify that the overshoot problem also 
existed for PTMEAS, which it did. 

Test case 5  Length units 
Changes to the UNITS statement in the DMIS program 

caused related canonical commands to be issued in the 
front end but the behavior of ENVISION was unaffected.  
Neither was a units-changing command issued to 
ENVISION, nor were lengths converted by the front end 
before being transmitted. 

Test case 6  Angle units 
ANGDEC (angles in degree decimal form) functioned 

normally. 
ANGDMS (angles in degrees, minutes, seconds form) 

caused the parser to issue an error and loop. 
ANGRAD (angles in radian form) caused no error 

messages, but the simulation went berserk – Cartesian 
coordinates ceased to function normally. 

Test case 7  Feed rate units 
As before, ENVISION was unaffected by feed rate 

changes.  EMOVESIMMAIN responded correctly to feed 
rate changes, but overshot its target after the DEFALT rate 
(sic – spelling is as specified) was selected. 

4.5.2 Focused Tests 
Test case 1  Connection 

Testing prior to network loading showed many skipped 
steps.  However, no change was observed when the 
network was loaded. 
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Test case 2  Control 
A temporary syntax error in DMIS file #4 resulted in a 

nonsense parser error being issued for file #5. 
As before, ENVISION was unaffected by feed rate 

changes, and setting the rate to DEFALT resulted in 
EMOVESIMMAIN overshooting and hanging the test. 

Test case 3  Scope 
Testing was blocked temporarily while a web server 

that is accessed by the front end became unavailable. 
The parser issued an error and looped when a RECALL 

command (recall a SAVEd coordinate system) was issued 
inside of a MEAS block.  This was fixed and no other 
failures were observed. 

Test case 4  Semantic 
Usage of FROM (define the home position) and 

GOHOME (return to the home position) syntax in DMIS 
file #3 resulted in a nonsense parser error being issued for 
file #4.  That syntax was removed and other than skipped 
moves the test then ran without additional failures. 

Test case 5  Syntactic 
No significant failures were observed. 

Test case 6  Scope 
Every ROTATE command (rotate the coordinate 

system) caused MEASPLMAIN (the log window of a 
front-end component) to print "invalid transform – better 
stop," but the behavior of the ENVISION simulation 
seemed to remain correct.  The front end was found to have 
a limit of 199 features.  After the number of features was 
reduced, the test ran to completion without additional 
failures. 

Test case 7  Semantic 
The test ran into trouble due to skipped commands.  

Additional GOTO commands were added as a workaround 
to avoid the skipping. 

As had been observed previously, the probe passed 
through the simulated part without stopping.  By 
monitoring the front-end window containing feedback from 
ENVISION, we verified that no meaningful probe-related 
feedback was being generated.  We then replaced the 
ENVISION model with an equivalent model that had 
collision detection enabled.  The probe still passed through 
the simulated part without stopping, but probe-related 
feedback did appear in the window.  Successful probes 
returned coordinates and three additional parameters while 
"missed" probes appeared as a repeat of the previous line of 
feedback.  We found that the subtest in which the probe 
only just contacted the part produced feedback indicative of 
a missed probe, even though ENVISION changed the color 
of the screen to show that it had detected a collision.  The 
subtest in which the probe entered the part did produce 
probe feedback, but it was highly inaccurate. 

The subtest in which we attempted to probe the table 
showed that collisions with the table were not detected at 
all. 

4.6 Analysis 
The classification of failures as "legitimately detected" 
failures versus failures that were related to known demo 
limitations was subjective.  Semantic inconsistencies 
between the designer and the user led to some difficulty.  
We assumed a system specification in order to be able to 
conduct the testing; however, failures occurred which 
would have been classified as demo limitations had we 
known to ask about such limitations during the 
preliminaries.  Since we did not, they were validly detected 
by the tests (in the context of our assumed specification). 

To help with this dilemma, we used the following rules 
of thumb.  If a given DMIS command caused the front end 
to emit a parser error, we excused the failure as a parser 
limitation; but if there was no parser error and the 
command was not correctly executed, we counted it 
towards the "score."  Also, if a given misbehavior of the 
simulation was obviously something that its users had 
chosen to ignore, we classified it as a limit; but if the 
behavior was masked in the original demo scenario, we 
considered it a legitimately detected failure. 

The tables below summarize the limitations and failures 
that were detected by the tests.  Limitations are denoted by 
Ln, failures by Fn.  Failures that were not directly related to 
the test scenario, but were observed nonetheless, are 
flagged by an asterisk. 

Table 1:  Black-Box Testing 

Test 1 
Simulated movement exceeds physical range L4 
Collisions are ignored L2 
ENVISION "freezing"                      L5,6 
Odd behavior after numerical subtest F1 
Erroneous feedback after ENVISION killed F2* 

Test 2 
ENVISION "freezing" L5,6 
Probing done at same rate as GOTO L5 

Test 3 
WKPLAN can't change on the fly L3 
Must specify vector in PTMEAS L1 
Skipped steps F3 

Test 4 
Can't set MESVEL inside MEAS block       L3 
ENVISION ignores feed rate L5 
Front-end sim overshot target, kept going F4 
Skipped steps F3 

Test 5 
Length units ignored F5 

Test 6 
Can't use ANGDMS L1 
ANGRAD causes berserk behavior F6 

Test 7 
ENVISION ignores feed rate L5 
Front-end sim overshot target, kept going F4 



 9

Table 2:  Focused Testing 

Test 1 
Skipped steps F3 

Test 2 
ENVISION feed rate not changed L5 
Overshoot after set default rate         F4 
Misleading parse error message F7* 

Test 3 
Blocked by web server failure L7 
Can't RECALL inside of a MEAS block      L3 

Test 4 
Misleading parse error message F7 
Skipped steps F3 

Test 5 no failures 
Test 6 

Limit 199 features L3 
Test 7 

Ignored collisions L2 
Bad output from ENVISION simulated probe F8 

Table 3:  Key to Failure Classes 

1 Control linkage broken by numerical overflow 
2 Loss of connection to ENVISION generates erroneous 

feedback to front end 
3 Combinations of short moves cause some to be skipped 
4 Front end simulation moves fail to terminate if feed 

rate is large 
5 Length units are ignored 
6 ANGRAD breaks Cartesian coordinates 
7 Parser error message identifies wrong input file and 

wrong command 
8 Bad output from ENVISION simulated probe 

Table 4:  Key to Limit Classes 

1 Front end parser is limited 
2 No collision detection 
3 Reasonable DMIS interpretation or characterization 

limit 
4 No bounds on movement 
5 Rate of movement in ENVISION not controlled 
6 ENVISION controls are dead while blocking on input 

from front end 
7 Dependent on web server, availability not assured 

4.7 Discussion 
Many of the identified failures and limitations can be 
classified as imperfect integration of some sort.  However, 
most of them were detected by black-box testing. 

The biggest problem for the testing process was the 
discovery of the front-end component EMOVESIM and the 
role that it played.  Our investigation of the freezing 
behavior in the first test showed that the long movements 
themselves were causing no problem for ENVISION; 
ENVISION was merely blocking while waiting on input 

from the front end.  The next command would not be 
issued by the front end until EMOVESIM finished 
simulating the same movements, which it did very slowly. 

We discussed the relevance of this front-end simulation 
with the operator and learned that in fact, the measurement 
data received by the front end comes from EMOVESIM.  
The data returned by ENVISION are not used.  This would 
have posed a severe problem had we defined the scope of 
our testing to include the subsequent operations on the 
returned data. 

With regards to ignored collisions and simulated 
movement exceeding the physical range, it was again 
resource limitations which led to limited functionality.  
Feedback from Envision to control was not implemented at 
all; therefore, collisions in Envision do not affect the 
control.  Coordination consistency between the two 
subsystems was not implemented either, so the probe can 
fly wild.  Collision detection was turned off by default 
because the concept of collision in Envision was not quite 
equivalent to the concept of probe touch that was needed in 
the inspection context; it was being used for an unintended 
purpose. 

5 Conclusion 
When used as part of a balanced integration and system test 
effort, focused testing for integration faults can improve the 
total yield of detected faults, just as any addition of distinct 
new test cases can improve the total yield.  However, our 
trial showed a lower yield for the focused tests than for the 
black-box tests, and more integration-related failures were 
observed during black-box testing than during focused 
testing.  Significantly, the integration-related failures were 
readily manifested by tests that did not target them at all.  
This suggests that traditional black-box testing is still a 
highly effective approach to use on a system of integrated 
legacy components, despite differences in the kinds of 
faults that tend to be present.  We did not find evidence to 
support the theory that black-box testing has a "blind spot" 
for integration-related faults. 

In future work we may conduct similar trials on other 
systems that we expect to become available, for example, 
one that integrates a Product Data Manager with a 
workflow system and/or an Enterprise Resource Planning 
system, to determine the consistency of the results. 
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